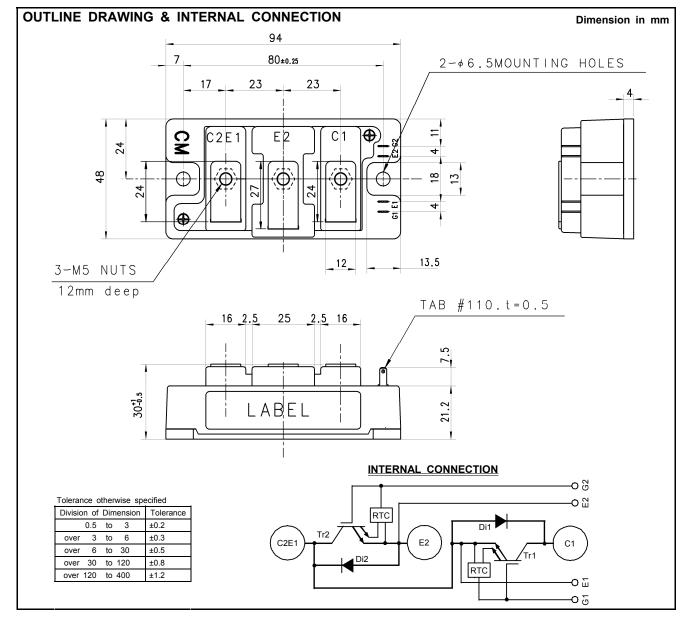
HIGH POWER SWITCHING USE INSULATED TYPE

CM100DUS-12F

Dual (Half-Bridge)


- 4^{th} generation Fast switching IGBT module -

Maximum junction temperature T_{jmax} ... **1 5 0** °C

- •Flat base Type
- Copper base plate
- •RoHS Directive compliant
- •UL Recognized under UL1557, File E323585

APPLICATION

High frequency (30 kHz ~ 60 kHz) switching use: Induction heating, Power supply, etc.

HIGH POWER SWITCHING USE INSULATED TYPE

ABSOLUTE MAXIMUM RATINGS (T_j =25 °C, unless otherwise specified)

Symbol	Item	Conditions	Rating	Unit
V _{CES}	Collector-emitter voltage	G-E short-circuited	600	V
V_{GES}	Gate-emitter voltage	C-E short-circuited	±20	V
I _C	Collector current	T _C =25 °C (Note.2)	100	Α
I _{CRM}	- Collector current	Pulse, Repetitive (Note.4)	200	_ A
P _{tot}	Total power dissipation	T _C =25 °C (Note.2, 5)	350	W
P _{tot} '	Total power dissipation	T _C '=25 °C (Note.3, 5)	445	T VV
I _E (Note.1)	Emitter current	T _C =25 °C (Note.2)	100	Α
I _{ERM} (Note.1)	(Free wheeling diode forward current)	Pulse, Repetitive (Note.4)	200	
T _j	Junction temperature	-	-40 ~ +150	°C
T _{stg}	Storage temperature	-	-40 ~ +125	
V _{isol}	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	2500	V

ELECTRICAL CHARACTERISTICS (T_j=25 °C, unless otherwise specified)

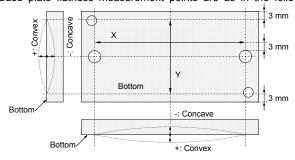
Symbol	Item	Conditions				Limits		Unit
Syllibol	item	Conditions		Min.	Тур.	Max.	Offic	
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited			-	-	1	mA
I _{GES}	Gate-emitter leakage current	±V _{GE} =V _{GES} , C-E short-circ	uited	I	-	-	20	μA
$V_{GE(th)}$	Gate-emitter threshold voltage	I _C =10 mA, V _{CE} =10 V		5	6	7	V	
V _{CEsat}	Collector-emitter saturation voltage	I _C =100 A (Note.6), V _{GF} =15 V		Γ _j =25 °C _i =125 °C	1.7	2.0 1.95	2.7	V
Cies	Input capacitance	GE -			-	-	27	nF
Coes	Output capacitance	V _{CE} =10 V, G-E short-circu	iited		-	-	1.8	
Cres	Reverse transfer capacitance	1 -			-	-	1.0	
Q_{G}	Gate charge	V _{CC} =300 V, I _C =100 A, V _{GE} =15 V		-	620	-	nC	
t _{d(on)}	Turn-on delay time	- V _{CC} =300 V, I _C =100 A, V _{GE} =±15 V,		-	-	100	- ns	
t _r	Rise time			-	-	80		
t _{d(off)}	Turn-off delay time	R_G =6.3 Ω, Inductive load		-	-	300		
t _f	Fall time			-	-	150		
V _{EC} (Note.1)	Emitter-collector voltage	I _E =100 A (Note.6), G-E short-circuited		-	2.0	2.6	V	
t _{rr} (Note.1)	Reverse recovery time	V _{CC} =300 V, I _E =100 A, V _{GE} =±15 V,		-	-	150	ns	
Q _{rr} (Note.1)	Reverse recovery charge	R _G =6.3 Ω, Inductive load		-	1.9	-	μC	
Eon	Turn-on switching energy per pulse	V _{CC} =300 V, I _C =I _E =100 A,		-	1.55	-		
E _{off}	Turn-off switching energy per pulse	V_{GE} =±15 V, R_{G} =6.3 Ω , T_{j} =125 °C,		-	2.2	-	mJ	
E _{rr} (Note.1)	Reverse recovery energy per pulse	Inductive load			-	1.2	-	
r _g	Internal gate resistance	Per switch			-	0	-	Ω

THERMAL RESISTANCE CHARACTERISTICS

Symbol	Item	Conditions	Limits			Unit
	item		Min.	Тур.	Max.	Offic
$R_{th(j-c)Q}$	Thermal resistance (Note.2)	Junction to case, per IGBT	-	-	0.35	K/W
$R_{th(j-c)D}$		Junction to case, per FWDi	-	-	0.70	K/W
$R_{th(c-s)}$	Contact thermal resistance (Note.2)	Case to heat sink, per 1/2 module, Thermal grease applied (Note.7)	ı	0.07	-	K/W
$R_{th(j-c')Q}$	Thermal resistance (Note.3)	Junction to case, per IGBT	-	-	0.28	K/W
$R_{th(j-c')D}$		Junction to case, per FWDi	-	-	0.40	K/W

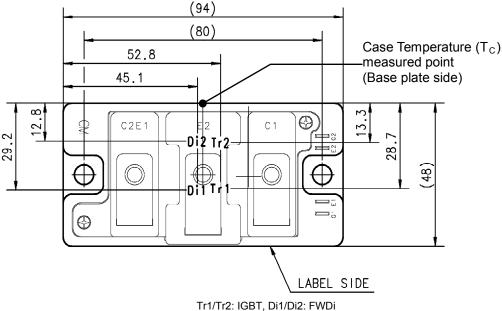
MECHANICAL CHARACTERISTICS

Symbol	Item	Conditions	Limits			Unit
	nem	Conditions	Min.	Тур.	Max.	Offic
M _t	Mounting torque	Main terminals M 5 screw	2.5	3.0	3.5	N·m
Ms	Mounting torque	Mounting to heat sink M 6 screw	3.5	4.0	4.5	INTIII
m	Weight	-	-	310	-	g
ec	Flatness of base plate	On the centerline X, Y (Note.8)	-100	-	+100	μm


HIGH POWER SWITCHING USE INSULATED TYPE

RECOMMENDED OPERATING CONDITIONS (Ta=25 °C)

Symbol	Item	Conditions -	Limits			Unit
	item		Min.	Тур.	Max.	Offic
V _{CC}	(DC) Supply voltage	Applied across C1-E2	-	300	400	V
V_{GEon}	Gate (-emitter drive) voltage	Applied across G1-Es1/G2-Es2	13.5	15.0	16.5	V
R _G	External gate resistance	Per switch	6.3	-	63	Ω


- Note.1: Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
- Note.2: Case temperature (T_C) measured point is base plate side. (Refer to the figure of chip location)
- Note.3: Case temperature (T_c ') and heat sink temperature (T_s ') are defined on the each surface of base plate and heat sink just under the chips. (Refer to the figure of chip location)

 The heat sink thermal resistance { $R_{th(s-a)}$ } should measure just under the chips.
- Note 4: Pulse width and repetition rate should be such that the device junction temperature (T_i) dose not exceed T_{imax} rating.
- Note.5: Junction temperature (T_j) should not increase beyond T_{jmax} rating.
- Note.6: Pulse width and repetition rate should be such as to cause negligible temperature rise. (Refer to the figure of test circuit)
- Note.7: Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K).
- Note.8: Base plate flatness measurement points are as in the following figure.

CHIP LOCATION (Top view)

Dimension in mm, tolerance: ±1 mm

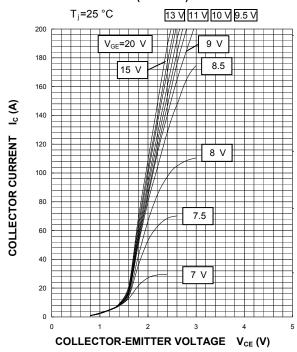
HIGH POWER SWITCHING USE **INSULATED TYPE**

TEST CIRCUIT AND WAVEFORMS Short-circuited Short-circuited Shortcircuited C2E1 C2E1 Short-Short-circuited circuited Shortcircuited Tr1 Tr2 Di1 Di2 V_{CEsat} test circuit V_{EC} test circuit ≬ V_{GE} Q_{rr} =0.5× I_{rr} × t_{rr} 0 V Load 😂 I_{E} 0 A 90 % I_{rr} Switching characteristics test circuit and waveforms $t_{rr},\ Q_{rr}$ test waveform 0 A 0.1×V_C 0.1×I_C 0.1×I_{CM}

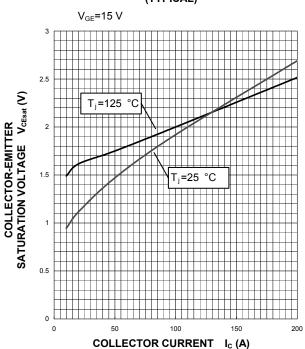
FWDi Reverse recovery energy IGBT Turn-off switching energy Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)

 t_{i}

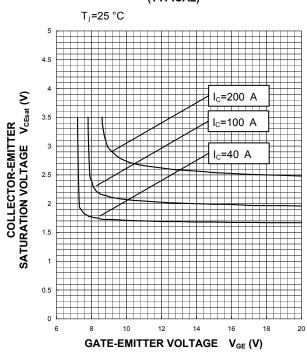
 $t_{\rm i}$

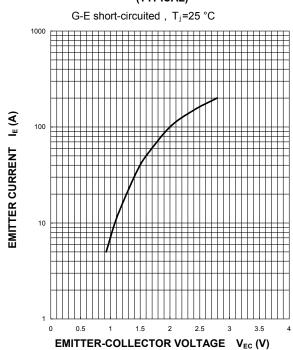

IGBT Turn-on switching energy

HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

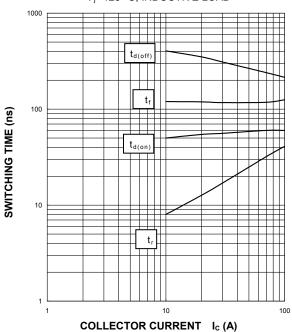
INVERTER PART


OUTPUT CHARACTERISTICS (TYPICAL)

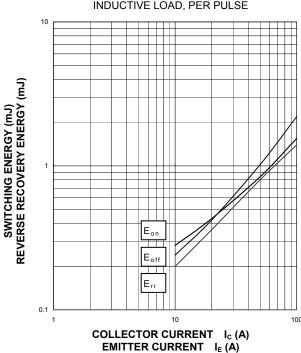

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

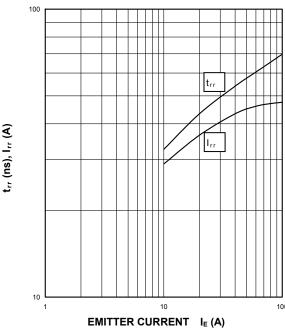
FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)



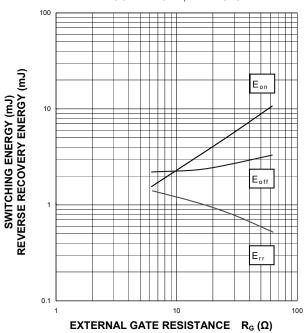
HIGH POWER SWITCHING USE INSULATED TYPE


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

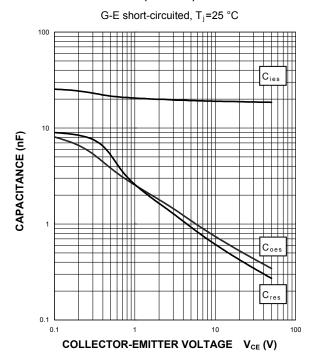
 V_{CC} =300 V, V_{GE} =±15 V, R_{G} =6.3 Ω , T_{i} =125 °C, INDUCTIVE LOAD


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

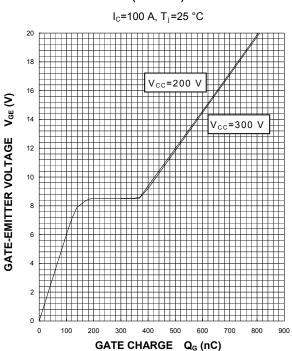
 V_{CC} =300 V, V_{GE} = \pm 15 V, R_{G} =6.3 Ω , T_{j} =125 °C, INDUCTIVE LOAD, PER PULSE


FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

 V_{CC} =300 V, V_{GE} =±15 V, R_G =6.3 Ω , T_j =125 °C, INDUCTIVE LOAD

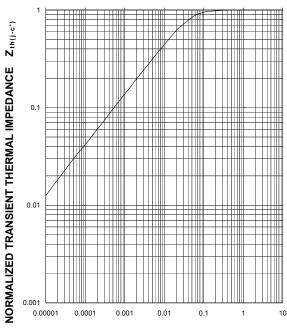

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

 V_{CC} =300 V, I_{C}/I_{E} =100 A, V_{GE} =±15 V, T_{j} =125 °C, INDUCTIVE LOAD, PER PULSE



HIGH POWER SWITCHING USE INSULATED TYPE

CAPACITANCE CHARACTERISTICS (TYPICAL)



GATE CHARGE CHARACTERISTICS (TYPICAL)

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)

Single pulse, T_C'=25°C

 $\begin{array}{c} R_{th(j\text{-}c')Q}\text{=}0.28 \text{ K/W}, \ R_{th(j\text{-}c')D}\text{=}0.40 \text{ K/W} \\ \textbf{TIME (S)} \end{array}$

HIGH POWER SWITCHING USE INSULATED TYPE

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- ·Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
- Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com/Global/index.html).
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- ·The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- ·Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

February-2011