

<IGBT Modules>

CM100DY-13T

HIGH POWER SWITCHING USE INSULATED TYPE

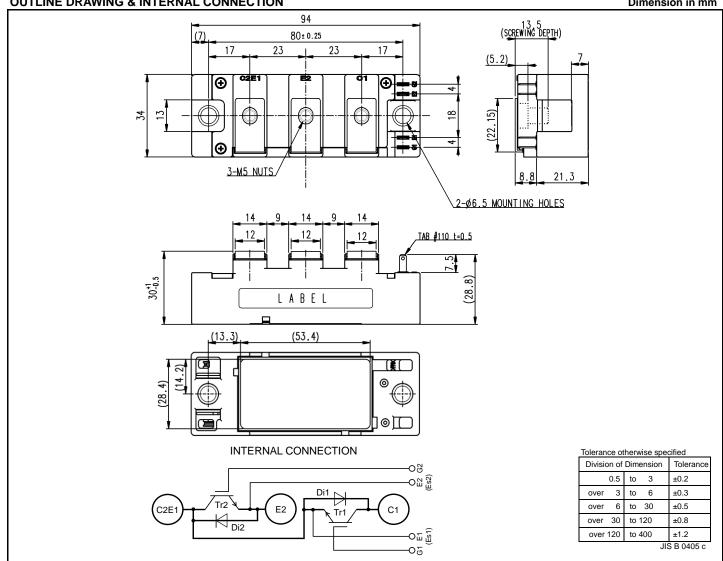
dual switch (half-bridge)

Collector current Ic 1 0 0 A Collector-emitter voltage V_{CES} 6 5 0 V

Maximum junction temperature T_{vjmax} 1 7 5 °C

- dual switch (half-bridge)
- Copper base plate (Nickel-plating)
- •Tin-plating tab terminals
- •RoHS Directive compliant
- •UL Recognized under UL1557, File No. E323585

APPLICATION


AC Motor Control, Motion/Servo Control, Power supply, etc.

OPTION (Below options are available.)

•PC-TIM (Phase Change Thermal Interface Material) pre-apply

OUTLINE DRAWING & INTERNAL CONNECTION

Dimension in mm

1

HIGH POWER SWITCHING USE

INSULATED TYPE

MAXIMUM RATINGS (T_{vj} =25 °C, unless otherwise specified)

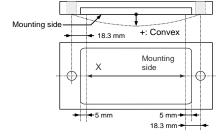
Symbol	Item	Conditions	Rating	Unit	
V _{CES}	Collector-emitter voltage	G-E short-circuited	650	V	
V _{GES}	Gate-emitter voltage	C-E short-circuited	± 20	V	
Ic	Collector current	DC, T _C =125 °C (Note2, 4)	100	^	
I _{CRM}	Collector current	Pulse, Repetitive (Note3)	200	A	
P _{tot}	Total power dissipation	T _C =25 °C (Note2, 4)	775	W	
I _E (Note1)	Facilities assumed	DC (Note2)		^	
I _{ERM} (Note1)	Emitter current	Pulse, Repetitive (Note3)	200	Α	
V _{isol}	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	4000	V	
T _{vjmax}	Maximum junction temperature	Instantaneous event (overload)	175	°C	
T _{Cmax}	Maximum case temperature	(Note4)	125		
T _{vjop}	Operating junction temperature	Continuous operation (under switching)	-40 ~ +150	°C	
T _{stg}	Storage temperature	-	-40 ~ +125		

ELECTRICAL CHARACTERISTICS (Tvj=25 °C, unless otherwise specified)

Symbol	Item	Conditions	One distance		Limits			
Symbol	item	Conditions		Min.	Тур.	Max.	Unit	
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited	-	-	1.0	mA		
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited	-	-	0.5	μA		
V _{GE(th)}	Gate-emitter threshold voltage	I _C =10 mA, V _{CE} =10 V	5.4	6.0	6.6	V		
		I _C =100 A, V _{GE} =15 V,	T _{vj} =25 °C	-	1.35	1.65	V	
V _{CEsat}		Refer to the figure of test circuit	T _{vj} =125 °C	-	1.45	-		
(Terminal)		(Note5)	T _{vj} =150 °C	-	1.50	-		
	Collector-emitter saturation voltage	Ic=100 A,	T _{vj} =25 °C	-	1.30	1.55	1	
V _{CEsat}		V _{GE} =15 V,	T _{vj} =125 °C	-	1.35	-	V	
(Chip)		(Note5)	T _{vj} =150 °C	-	1.35	-	1	
Cies	Input capacitance			-	-	13.4	nF	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited		-	-	0.6		
Cres	Reverse transfer capacitance		-	-	0.3	1		
Q _G	Gate charge	V _{CC} =300 V, I _C =100 A, V _{GE} =15 V		-	0.41	-	μC	
t _{d(on)}	Turn-on delay time	Vcc=300 V, Ic=100 A, V _{GE} =±15 V,		-	-	200	ns	
tr	Rise time			-	-	150		
t _{d(off)}	Turn-off delay time			-	-	400		
t _f	Fall time	R _G =6.2 Ω, Inductive load	-	-	400			
(Note 4)		I _E =100 A, G-E short-circuited,	T _{vj} =25 °C	-	2.05	2.85	V	
V _{EC} (Note.1)		Refer to the figure of test circuit	T _{vj} =125 °C	-	1.95	-		
(Terminal)		(Note5)	T _{vj} =150 °C	-	1.95	-		
(Note 4)	- Emitter-collector voltage	I _E =100 A,	T _{vj} =25 °C	-	1.90	2.65		
V _{EC} (Note.1) (Chip)		G-E short-circuited,	T _{vj} =125 °C	=	1.80	=	V	
		(Note5)	T _{vj} =150 °C	=	1.80	=		
t _{rr} (Note1)	Reverse recovery time	V _{CC} =300 V, I _E =100 A, V _{GE} =±15 V,		-	-	150	ns	
Q _{rr} (Note1)	Reverse recovery charge	R _G =6.2 Ω, Inductive load		-	3.5	-	μC	
Eon	Turn-on switching energy per pulse	V_{CC} =300 V, I_{C} = I_{E} =100 A, V_{GE} =±15 V, R_{G} =6.2 Ω , T_{vj} =150 °C,		-	1.2	-	1	
E _{off}	Turn-off switching energy per pulse			-	5.1	-	mJ	
E _{rr} (Note1)	Reverse recovery energy per pulse	Inductive load	-	1.8	-	mJ		
R _{CC'+EE'}	Internal lead resistance	Main terminals-chip, per switch, T _C =25 °	-	0.2	-	mΩ		
r _g	Internal gate resistance	Per switch	-	0	-	Ω		

HIGH POWER SWITCHING USE

INSULATED TYPE


THERMAL RESISTANCE CHARACTERISTICS

Symbol	Item	Conditions		Limits			Unit
				Min.	Тур.	Max.	Offic
$R_{th(j-c)Q}$	Thermal resistance	Junction to case, per Inverter IGBT (Note4)		-	-	193	K/kW
$R_{th(j-c)D}$	Thermal resistance	Junction to case, per Inverter FWD (Note4)		=	-	304	
R _{th(c-s)}	Contact thermal resistance	Case to heat sink,	Thermal grease applied (Note4, 6)	1	36.6	=	K/kW
		per 1 module,	PC-TIM applied (Note4, 7)	=	9.7	=	TORV

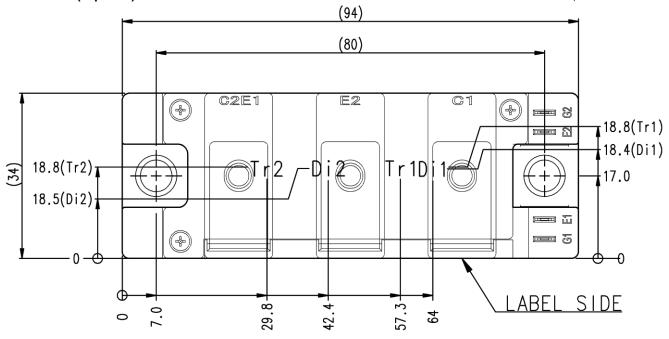
MECHANICAL CHARACTERISTICS

Symbol	Itom	Conditions		Limits			Unit
	Item			Min.	Тур.	Max.	Onit
M _t	Mounting torque	Main terminals	M 5 screw	2.5	3.0	3.5	N∙m
Ms	Mounting torque	Mounting to heat sink	M 6 screw	3.5	4.0	4.5	N∙m
ds	Creepage distance	Terminal to terminal		18.4	=	-	
		Terminal to base plate		21.1	-	-	mm
da	Clearance	Terminal to terminal		9.6	-	-	mm
	Clearance	Terminal to base plate		16.7	-	-	mm
ec	Flatness of base plate	On the centerline (Note8)		±0	=	+200	μm
m	mass	-		-	120	-	g

- *: This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU.
- Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free-wheeling diode (FWD).
 - 2. Junction temperature $(T_{\nu j})$ should not increase beyond $T_{\nu j\,m\,a\,x}$ rating.
 - 3. Pulse width and repetition rate should be such that the device junction temperature (T_{vj}) dose not exceed $T_{vj\,m\,a\,x}$ rating.
 - 4. Case temperature (T_C) and heat sink temperature (T_S) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.
 - 5. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit.
 - 6. Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K)/D_(C-S)=50 μ m.
 - 7. Typical value is measured by using PC-TIM of $\lambda{=}3.4~\text{W/(m\cdot K)/D_{(C\text{-}S)}}{=}50~\mu\text{m}.$
 - 8. The base plate (mounting side) flatness measurement point is as follows of the following figure.

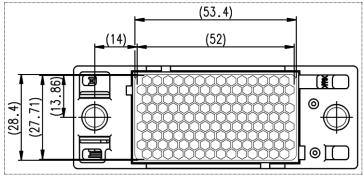
Publication Date : February 2017 CMH-11274 Ver.1.0

HIGH POWER SWITCHING USE

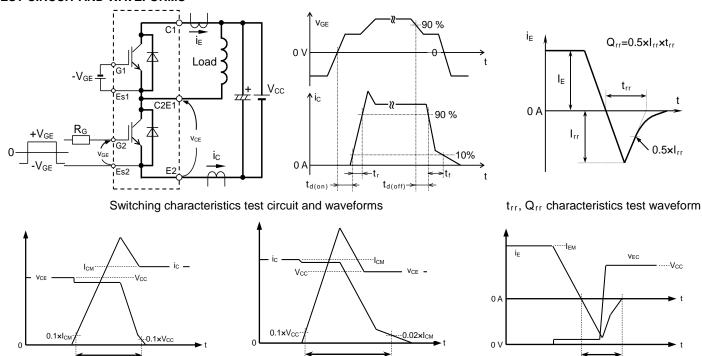

INSULATED TYPE

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Conditions	Limits			Unit
		Conditions	Min.	Тур.	Max.	Offic
V _{cc}	(DC) Supply voltage	Applied across C1-E2 terminals	-	300	450	V
V_{GEon}	Gate (-emitter drive) voltage	Applied across G1-Es1/G2-Es2 terminals	13.5	15.0	16.5	V
R _G	External gate resistance	Per switch	6.2	-	62	Ω

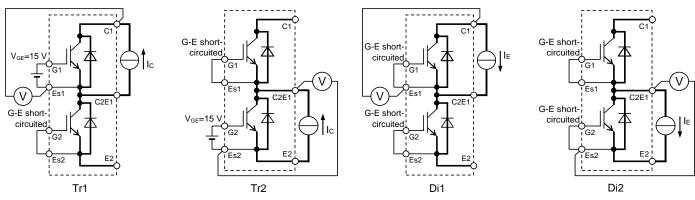

CHIP LOCATION (Top view)

Dimension in mm, tolerance: ±1 mm



Tr1/Tr2: IGBT, Di1/Di2: FWD

Option: PC-TIM applied baseplate outline


TEST CIRCUIT AND WAVEFORMS

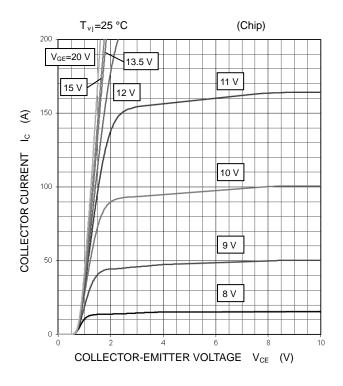
IGBT Turn-off switching energy Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)

TEST CIRCUIT

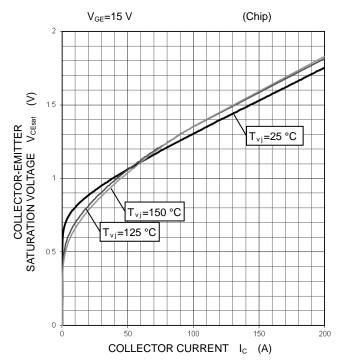
IGBT Turn-on switching energy

V_{CEsat} characteristics test circuit

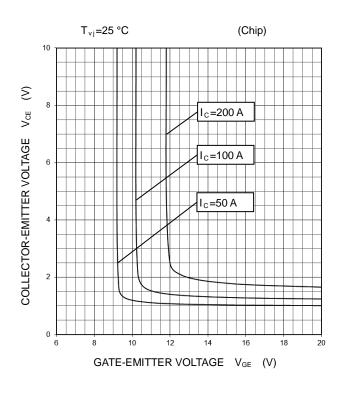
V_{EC} characteristics test circuit

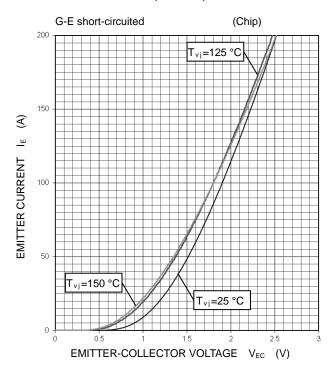

FWD Reverse recovery energy

HIGH POWER SWITCHING USE

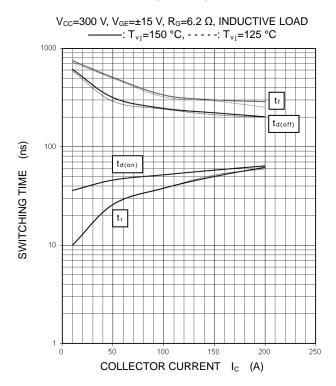

INSULATED TYPE

PERFORMANCE CURVES

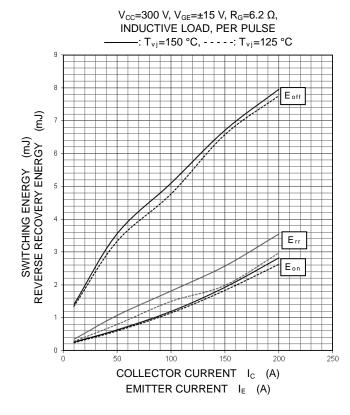

OUTPUT CHARACTERISTICS (TYPICAL)


COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

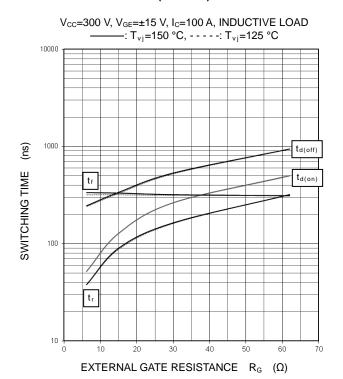
COLLECTOR-EMITTER VOLTAGE CHARACTERISTICS (TYPICAL)



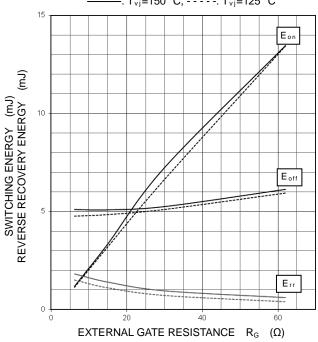
FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)



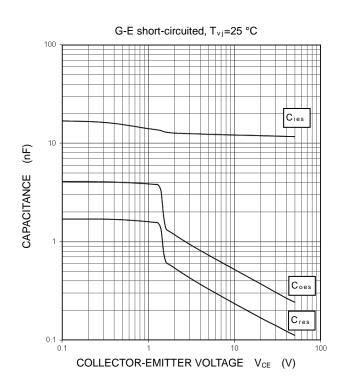
PERFORMANCE CURVES


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

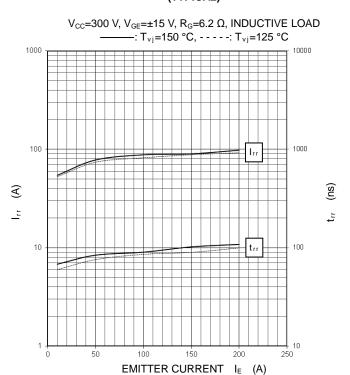
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)



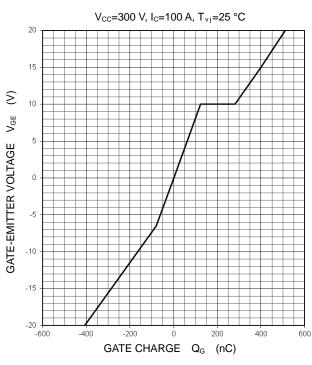
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

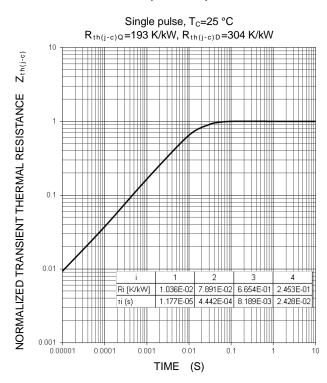

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

 V_{CC} =300 V, V_{GE} =±15 V, I_{C}/I_{E} =100 A, INDUCTIVE LOAD, PER PULSE ——: T_{Vj} =150 °C, - - - - : T_{Vj} =125 °C



PERFORMANCE CURVES

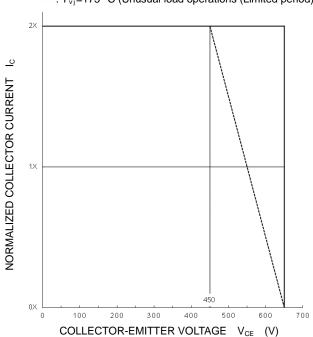

CAPACITANCE CHARACTERISTICS (TYPICAL)


FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

GATE CHARGE CHARACTERISTICS (TYPICAL)

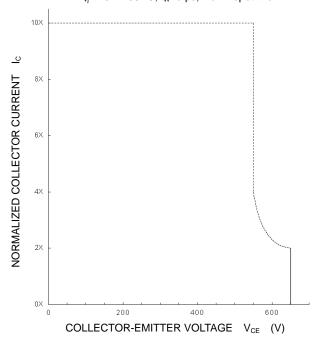
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)

Note: The characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.


HIGH POWER SWITCHING USE

INSULATED TYPE

PERFORMANCE CURVES


TURN-OFF SWITCHING SAFE OPERATING AREA (REVERSE BIAS SAFE OPERATING AREA) (MAXIMUM)

 V_{CC} ≤450 V, V_{GE} =±15 V, R_{G} =6.2~62 Ω , ——: T_{vj} =25~150 °C (Normal load operations (Continuous) - - - - - : T_{vj} =175 °C (Unusual load operations (Limited period)

SHORT-CIRCUIT SAFE OPERATING AREA (MAXIMUM)

 $V_{CC}{\le}400$ V, $V_{GE}{=}\pm15$ V, $R_{G}{=}6.2{\sim}62$ $\Omega,$ $T_{vi}{=}$ 25 ${\sim}$ 150 °C, $t_{W}{\le}8$ $\mu s,$ Non-Repetitive

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.