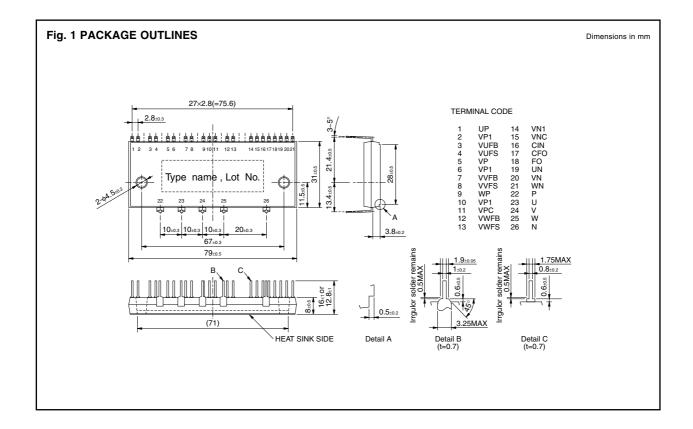
TRANSFER-MOLD TYPE INSULATED TYPE

PS21444-E

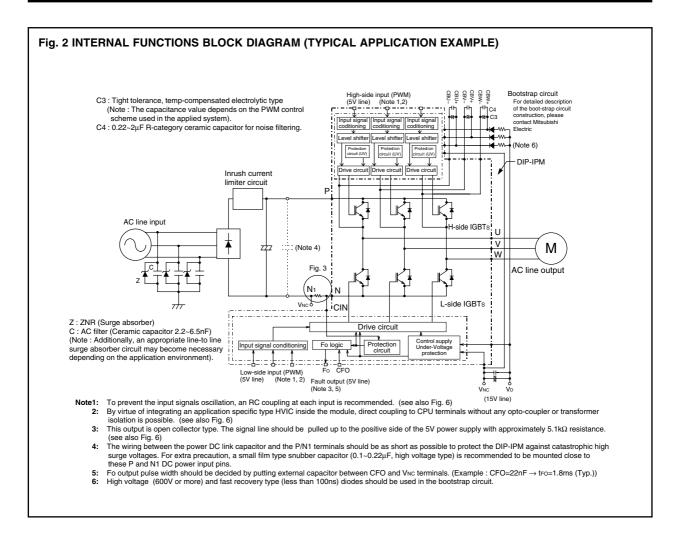
INTEGRATED POWER FUNCTIONS

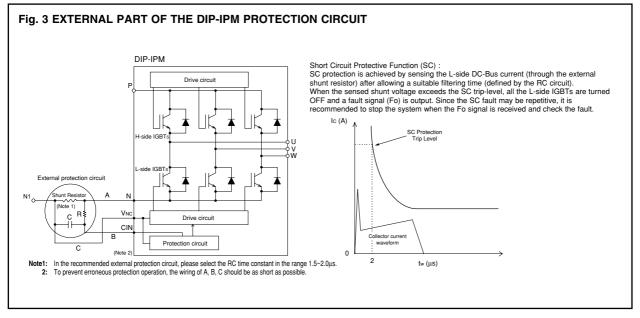
4th generation (planar) IGBT inverter bridge for 3 phase DC-to-AC power conversion.


INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For upper-leg IGBTs: Drive circuit, High voltage isolated high-speed level shifting, Control circuit under-voltage (UV) protection.

 Note: Bootstrap supply scheme can be applied.
- For lower-leg IGBTs: Drive circuit, Control circuit under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to a SC fault (Low-side IGBT) or a UV fault (Low-side supply).
- Input interface: 5V line CMOS/TTL compatible, Schmitt Trigger receiver circuit.


APPLICATION


AC100V~200V three-phase inverter drive for small power motor control.

TRANSFER-MOLD TYPE INSULATED TYPE

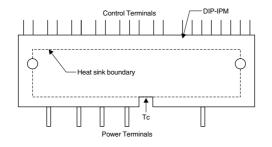
TRANSFER-MOLD TYPE INSULATED TYPE

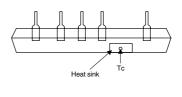
MAXIMUM RATINGS (Tj = 25° C, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-N	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-N	500	V
VCES	Collector-emitter voltage		600	V
±lc	Each IGBT collector current	Tc = 25°C	15	Α
±ICP	Each IGBT collector current (peak)	Tc = 25°C, instantaneous value (pulse)	30	Α
Pc	Collector dissipation	Tc = 25°C, per 1 chip	43	W
Tj	Junction temperature	(Note 1)	-20~+150	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@ Tc $\leq 100^{\circ}$ C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) $\leq 125^{\circ}$ C (@ Tc $\leq 100^{\circ}$ C).


CONTROL (PROTECTION) PART


Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VPC, VN1-VNC	20	V
VDB	Control supply voltage	Applied between Vufb-Vufs, Vvfb-Vvfs, Vwfb-Vwfs	20	V
VCIN	Input voltage	Applied between UP, VP, WP-VPC, UN, VN, WN-VNC	-0.5~+5.5	V
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	15	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	VD = 13.5~16.5V, Inverter part T _j = 125°C, non-repetitive, less than 2 μ s	400	V
Tc	Module case operation temperature	(Note 2)	−20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, AC 1 minute, connection pins to heat-sink plate	2500	Vrms

Note 2:Tc MEASUREMENT POINT

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Cumala al	D	O and distant	Limits			Unit
Symbol Parameter		Condition		Тур.	Max.	
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	_	_	2.85	°C/W
Rth(j-c)F	resistance	Inverter FWD part (per 1/6 module)	_	_	4.5	°C/W
Rth(c-f)	Contact thermal resistance	Case to fin, (per 1 module) thermal grease applied	_	_	0.067	°C/W

ELECTRICAL CHARACTERISTICS ($T_j = 25$ °C, unless otherwise noted)

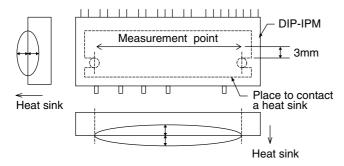
INVERTER PART

0	Daniel and a second	O and distant		Limits			Linit
Symbol	Parameter		Condition		Тур.	Max.	Unit
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	IC = 15A, Tj = 25°C	_	1.55	2.15	V
	voltage	VCIN = 0V	Ic = 15A, Tj = 125°C	_	1.65	2.25	V
VEC	FWD forward voltage	Tj = 25°C, -IC = 15A, VC	Tj = 25°C, -IC = 15A, VCIN = 5V		2.50	3.40	V
ton				0.10	0.70	1.20	μs
trr		VCC = 300V, VD = VDB = 15V		_	0.10	_	μs
tc(on)	Switching times	Ic = 15A, Tj = 125°C, Vc	Ic = 15A, Tj = 125°C, VcIN = 5V ↔ 0V Inductive load (upper-lower arm)		0.40	0.80	μs
toff		Inductive load (upper-lov			1.50	2.60	μs
tc(off)				_	0.90	1.80	μs
ICES	Collector-emitter cut-off	VCE = VCES	Tj = 25°C	_	_	1	mA
	current	VOE = VOES	Tj = 125°C	_	_	10	111/4

CONTROL (PROTECTION) PART

Curanhani	Dovernator		Condition		Limits		
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit
VD	Control supply voltage	Applied between \	P1-VPC, VN1-VNC	13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between \	/UFB-VUFS, VVFB-VVFS, VWFB-VWFS	13.5	15.0	16.5	V
ID	Circuit current	VD = VDB = 15V,	Total of VP1-VPC, VN1-VNC	_	_	8.50	A
טו	Circuit current	VCIN = 5V	VUFB-VUFS, VVFB-VVFS, VWFB-VWFS		_	1.00	mA
VFOH		Vsc = 0V, Fo = 10)kΩ 5V pull-up	4.9	_	_	V
VFOL	Fault output voltage	Vsc = 1V, Fo = 10)kΩ 5V pull-up	_	0.8	1.2	V
VFOsat	1	Vsc = 1V, IFO = 15	VSC = 1V, IFO = 15mA		1.2	1.8 V	V
tdead	Arm shoot-through blocking time	Relates to corresponding input signal for blocking arm shoot-through. −20°C ≤ Tc ≤ 100°C		2.5	_	_	μs
VSC(ref)	Short circuit trip level	Tj = 25°C, VD = 15	$T_j = 25^{\circ}C, V_D = 15V$ (Note 3)		0.5	0.55	V
UVDBt			Trip level	10.0	_	12.0	V
UVDBr	Supply circuit under-voltage	T: < 1050C	Reset level	10.5	_	12.5	V
UVDt	protection	Tj ≤ 125°C	Trip level	10.3	_	12.5	V
UVDr	1		Reset level	10.8	_	13.0	V
tFO	Fault output pulse width	CFO = 22nF (Note 4)		1.0	1.8	l —	ms
Vth(on)	ON threshold voltage	A 11 11 1			1.4	2.0	V
Vth(off)	OFF threshold voltage	Applied between :	UP, VP, WP-VPC, UN, VN, WN-VNC	2.5	3.0	4.0	V

Note 3: Short circuit protection is functioning only at the low-arms. Please select the value of the external shunt resistor such that the SC trip-level is less than 25.5 A.

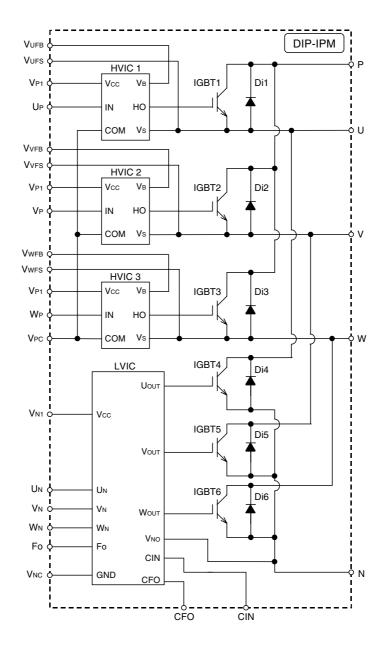

^{4:} Fault signal is output when the low-arms short circuit or control supply under-voltage protective functions operate. The fault output pulsewidth tFO depends on the capacitance value of CFO according to the following approximate equation: CFO = 12.2 × 10⁻⁶ × tFO [F].

TRANSFER-MOLD TYPE INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Condition		Limits			Limit
Parameter	Condition		Min.	Тур.	Max.	Unit
Mounting torque	Mounting screw : M4	_	0.98	1.18	1.47	N⋅m
Terminal pulling strength	Weight 19.6N	EIAJ-ED-4701	10	_	_	S
Bending strength	Weight 9.8N. 90deg bend	EIAJ-ED-4701	2	_	_	times
Weight		_	_	54	_	g
Heat-sink flatness	(Note 5)	_	-50	_	100	μm

Note 5: Measurement point of heat-sink flatness


RECOMMENDED OPERATION CONDITIONS

Symbol Paramete	D	Condition		1.124		
	Parameter	Condition		Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-N	0	300	400	V
VD	Control supply voltage	Applied between VP1-VPC, VN1-VNC	13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between Vufb-Vufs, Vvfb-Vvfs, Vwfb-Vwfs	13.5	15.0	16.5	٧
$\Delta VD, \Delta VDB$	Control supply variation			_	1	V/µs
tdead	Arm shoot-through blocking time	Relates to corresponding input signal for blocking arm shoot-through	2.5	_	_	μs
fPWM	PWM input frequency	Tc ≤ 100°C, Tj ≤ 125°C	_	5	_	kHz
VCIN(ON)	Input ON threshold voltage	Applied between UP, VP, WP-VPC	0~0.65		V	
VCIN(OFF)	Input OFF threshold voltage	Applied between Un, Vn, Wn-Vnc	4.0~5.5		V	

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 4 THE DIP-IPM INTERNAL CIRCUIT

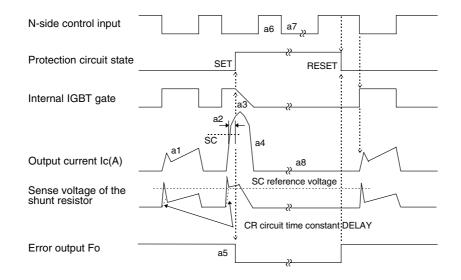
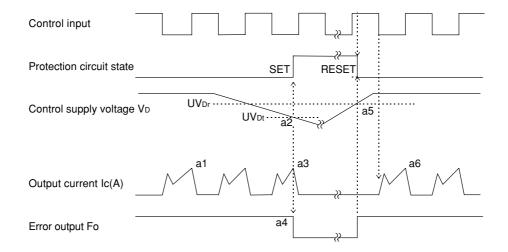

TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 5 TIMING CHARTS OF THE DIP-IPM PROTECTIVE FUNCTIONS

[A] Short-Circuit Protection (N-side only)


(For the external shunt resistor and CR connection.)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. Hard IGBT gate interrupt.
- a4. IGBT turns OFF.
- a5. Fo timer operation starts: The pulse width of the Fo signal is set by the external capacitor CFo.
- a6. Input "H": IGBT OFF state.
- a7. Input "L" : IGBT ON state.
- a8. IGBT OFF state.

[B] Under-Voltage Protection (N-side, UVD)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Under voltage trip (UVDt).a3. IGBT OFF in spite of control input condition.
- a4. Fo timer operation starts.
- a5. Under voltage reset (UVDr)
- a6. Normal operation: IGBT ON and carrying current.

TRANSFER-MOLD TYPE **INSULATED TYPE**

[C] Under-Voltage Protection (P-side, UVDB)

- a1. Control supply voltage rises: After the voltage level reachs UVDBr, the circuits start to operate when the next input is applied. a2. Normal operation: IGBT ON and carrying current. a3. Under voltage trip (UVDBt).

- a4. IGBT OFF in spite of control input condition, but there is no Fo signal output.
- a5. Under-voltage reset (UVDBr).
- a6. Normal operation: IGBT ON and carrying current.

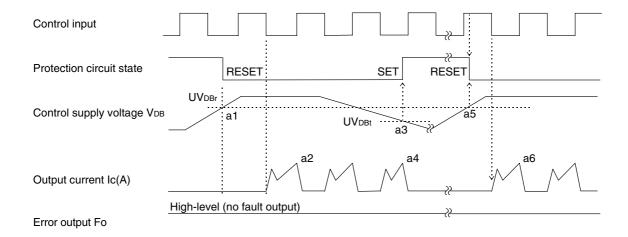
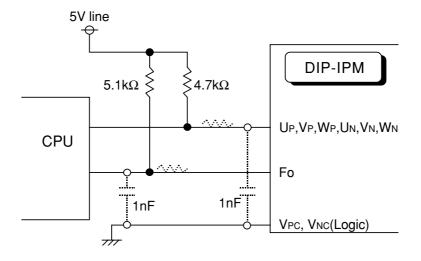
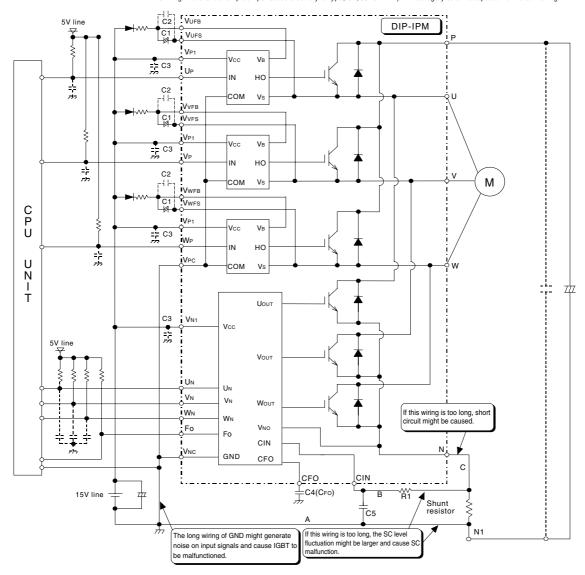



Fig. 6 RECOMMENDED CPU I/O INTERFACE CIRCUIT


Note: RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in the application and on the wiring impedances of the application's printed circuit board.

TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 7 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

C1: Tight tolerance temp-compensated electrolytic type; C2,C3: 0.22~2 μ F R-category ceramic capacitor for noise filtering

- Note 1: To prevent the input signals oscillation, an RC coupling at each input is recommended, and the wiring of each input should be as short as possible. (Less than 2cm)
 - 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to CPU terminals without any opto-coupler or transformer isolation is possible.
 - 3: Fo output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 5 1kO resistance
 - 4: FO output pulse width should be decided by connecting an external capacitor between CFO and VNc terminals (CFo). (Example: CFO
 - = 22 nF \rightarrow tFO = 1.8 ms (typ.)) 5: Each input signal line should be pulled up to the 5V power supply with approximately 4.7k Ω resistance (other RC coupling circuits at each input may be needed depending on the PWM control scheme used and on the wiring impedances of the system's printed circuit board). Approximately a $0.22 \sim 2\mu F$ by-pass capacitor should be used across each power supply connection terminals.
 - 6: To prevent errors of the protection function, the wiring of A, B, C should be as short as possible.
 - 7: In the recommended protection circuit, please select the R1C5 time constant in the range $1.5 \sim 2 \mu s$.
 - 8: Each capacitor should be put as nearby the pins of the DIP-IPM as possible.
 - 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P&N1 pins should be as short as possible. Approximately a $0.1 \sim 0.22 \mu F$ snubber capacitor between the P&N1 pins is recommended.

