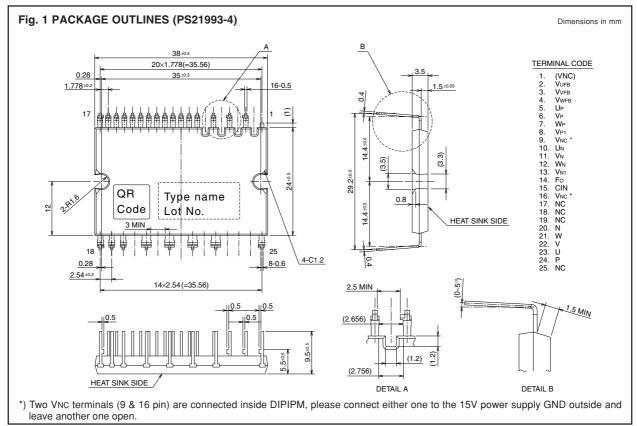
TRANSFER-MOLD TYPE INSULATED TYPE

PS21993-4

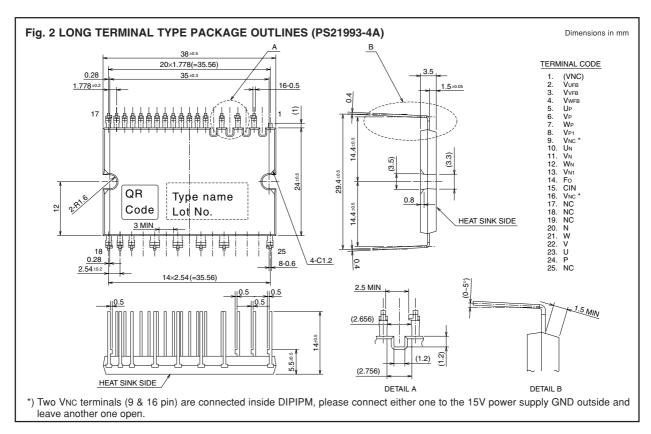
INTEGRATED POWER FUNCTIONS

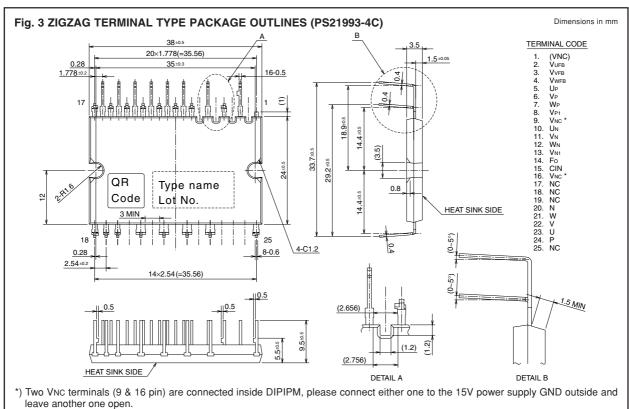

600V/10A low-loss CSTBT inverter bridge for three phase DC-to-AC power conversion

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

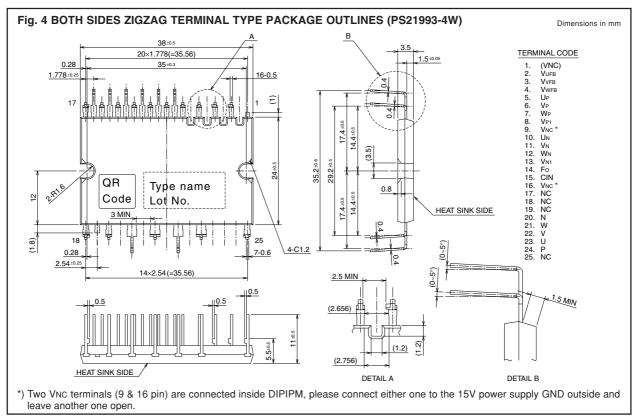
- For P-side: Drive circuit, High voltage high-speed level shifting, Control supply under-voltage (UV) protection.
- For N-side: Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to a SC fault (N-side IGBT), a UV fault (N-side supply).
- Input interface : 3~5V line (High Active).
- UL Recognized : Yellow Card No. E80276

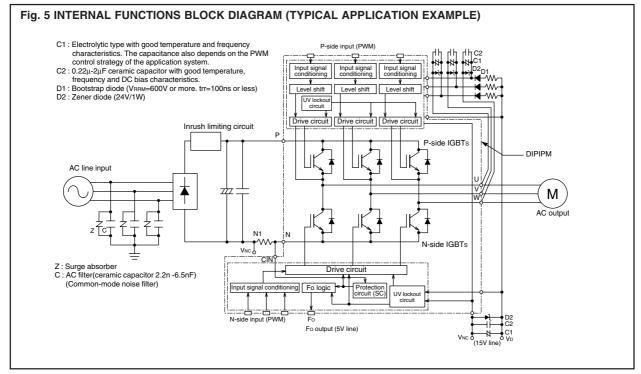
APPLICATION


AC100V~200V three-phase inverter drive for small power motor control.

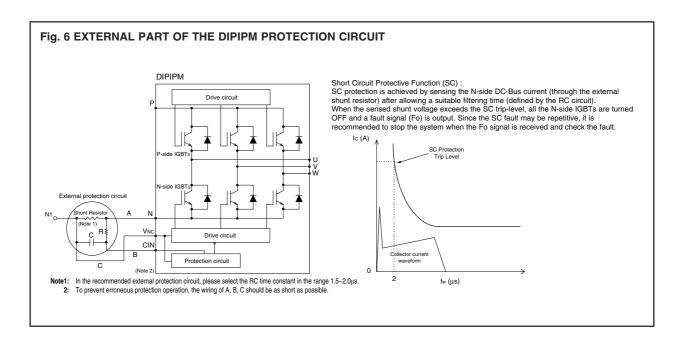


Note: CSTBT is registered trademark of MITSUBISHI ELECTRIC CORPORATION in Japan.


TRANSFER-MOLD TYPE INSULATED TYPE



TRANSFER-MOLD TYPE INSULATED TYPE



QR Code is registered trademark of DENSO WAVE INCORPORATED in JAPAN and other countries.

TRANSFER-MOLD TYPE INSULATED TYPE

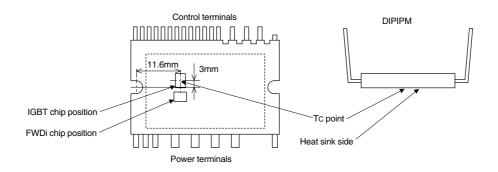
MAXIMUM RATINGS ($T_j = 25^{\circ}C$, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-N	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-N	500	V
VCES	Collector-emitter voltage		600	V
±lc	Each IGBT collector current	Tc = 25°C	10	Α
±ICP	Each IGBT collector current (peak)	Tc = 25°C, less than 1ms	20	Α
Pc	Collector dissipation	Tc = 25°C, per 1 chip	27.0	W
Tj	Junction temperature	(Note 1)	− 20~+125	°C

Note 1: The maximum junction temperature rating of the power chips integrated within the DIPIPM is 150° C (@ Tc $\leq 100^{\circ}$ C). However, to ensure safe operation of the DIPIPM, the average junction temperature should be limited to Tj(ave) $\leq 125^{\circ}$ C (@ Tc $\leq 100^{\circ}$ C).

CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC 20		V
VDB	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-W	20	V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	−0.5~VD+0.5	V



TRANSFER-MOLD TYPE INSULATED TYPE

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$VD = 13.5 \sim 16.5 V$, Inverter part $T_j = 125 °C$, non-repetitive, less than 2μs	400	V
Tc	Module case operation temperature	(Note 2)	− 20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, Between pins and heat sink plate	1500	Vrms

Note 2: To measurement point

THERMAL RESISTANCE

Symbol	Davamatav	Condition		Limits		
Symbol Parameter		Condition		Тур.	Max.	Unit
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	_	_	3.7	°C/W
Rth(j-c)F	resistance (Note 3)	Inverter FWDi part (per 1/6 module)	_	_	4.5	°C/W

Note 3: Grease with good thermal conductivity and long-term quality should be applied evenly with +100μm~+200μm on the contacting surface of DIPIPM and heat sink.

The contacting thermal resistance between case and heat sink (Rth(c-f)) is determined by the thickness and the thermal conductivity of the applied grease.

For reference, Rth(c-f) (per 1/6 module) is about 0.3°C/W when the grease thickness is 20µm and the thermal conductivity is 1.0W/mK.

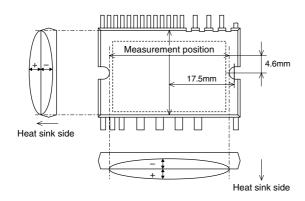
ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$, unless otherwise noted) **INVERTER PART**

Cumple of	Davarantas	Condition		Limits			Unit
Symbol	Parameter		Condition		Тур.	Max.	Unit
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	IC = 10A, Tj = 25°C	_	1.60	2.10	\ /
VCE(Sat)	voltage	VIN = 5V	IC = 10A, Tj = 125°C	_	1.70	2.20	V
VEC	FWDi forward voltage	Tj = 25°C, -IC = 10A, VIN = 0V		_	1.70	2.20	V
ton				0.60	1.10	1.70	μs
trr		VCC = 300V, VD = VDB = 15V		_	0.30	_	μs
tc(on)	Switching times	IC = 10A, Tj = 125°C, VII	$N = 0 \leftrightarrow 5V$	_	0.40	0.60	μs
toff		Inductive load (upper-lov	wer arm)	_	1.50	2.35	μs
tc(off)				_	0.40	1.00	μs
ICES	Collector-emitter cut-off		Tj = 25°C	_	_	1	mA
1020	current	VCE = VCES	Tj = 125°C	_	_	10	IIIA

TRANSFER-MOLD TYPE INSULATED TYPE

CONTROL (PROTECTION) PART

Cumphal	Davamatar	Condition -			Limits			
Symbol	Parameter			Min.	Тур.	Max.	Unit	
		VD = VDB = 15V Total of VP1-VNC, VN1-VNC VIN = 5V VUFB-U, VVFB-V, VWFB-W		_	_	2.80	mA	
ID	Circuit current			U, VVFB-V, VWFB-W	_	_	0.55	mA
l in	Circuit current	VD = VDB = 15V	Total of	of VP1-VNC, VN1-VNC	_	_	2.80	mA
		VIN = 0V	VUFB-	U, VVFB-V, VWFB-W	_	_	0.55	mA
VFOH	Fault output voltage	Vsc = 0V, Fo terminal pull-up to 5V by 10kΩ			4.9	_	_	V
VFOL	Fault output voltage	VSC = 1V, IFO = 1mA		_	_	0.95	V	
VSC(ref)	Short circuit trip level	VD = 15V (Note 4)		0.43	0.48	0.53	V	
lin	Input current	VIN = 5V	VIN = 5V		0.70	1.00	1.50	mA
UVDBt				Trip level	10.0	_	12.0	V
UVDBr	Control supply under-voltage	T _i ≤ 125°C		Reset level	10.5	_	12.5	V
UVDt	protection	1] ≤ 125 C	Trip level	10.3	_	12.5	V	
UVDr				Reset level	10.8	_	13.0	V
tFO	Fault output pulse width			(Note 5)	20	_	_	μs
Vth(on)	ON threshold voltage				_	2.1	2.6	V
Vth(off)	OFF threshold voltage	Applied between LL	Applied between LIP VP MP LIN VA MAN VA		0.8	1.3	_	V
Vth(hys)	ON/OFF threshold hysteresis voltage	Applied between UP, VP, WP, UN, VN, WN-VNC		0.35	0.65	_	V	

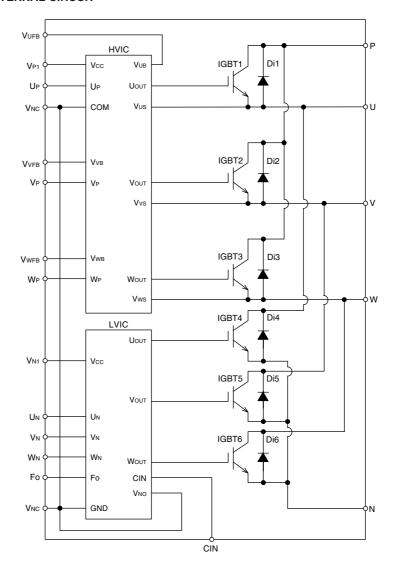

Note 4: Short circuit protection works only for the N-side. Please select the external shunt resistance such that the SC trip-level is up to 1.7 times of the current rating.

MECHANICAL CHARACTERISTICS AND RATINGS

Davamatar	O a se distante		Limits			1.1
Parameter	Con	Condition			Max.	Unit
Mounting torque	Mounting screw : M3 (Note 6) Recommended : 0.69 N·m		0.59	_	0.78	N·m
Weight			_	10	_	g
Heat-sink flatness	(Note 7)		-50		100	μm

Note 6: Plain washers (ISO 7089~7094) are recommended.

Note 7: Flatness measurement position


^{5:} Fault signal is asserted only corresponding to a SC or a UV failure at N-side, and the Fo pulse width is different for each failure modes. For SC failure, Fo output is with a fixed width of 20μs(min), but for UV failure, Fo outputs continuously during the whole UV period, however, the minimum Fo pulse width is 20μs(min) for very short UV period less than 20μs.

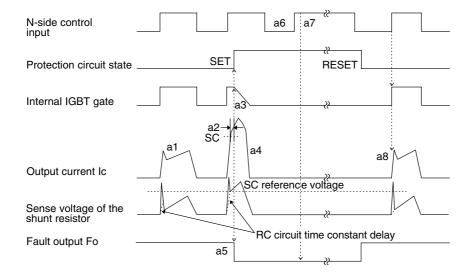
TRANSFER-MOLD TYPE **INSULATED TYPE**

RECOMMENDED OPERATION CONDITIONS

0	Symbol Parameter Condition			Limits			1.1-24
Symbol	rarameter	Condition		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-N		0	300	400	V
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC		13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-	W	13.0	15.0	18.5	V
ΔV D, ΔV DB	Control supply variation			-1	_	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tc ≤ 100°C		1.5	_	_	μs
fPWM	PWM input frequency	Tc ≤ 100°C, Tj ≤ 125°C		_	_	20	kHz
lo	Allowable rms current	VCC = 300V, VD = VDB = 15V, P.F = 0.8, sinusoidal PWM,	fPWM = 5kHz	_	_	5.5	Arms
lo	Allowable fins current	$T_j \le 125^{\circ}C$, $T_C \le 100^{\circ}C$ (Note 8)	fPWM = 15kHz	_	_	3.5	Aiiis
PWIN(on)	Allowable minimum input			0.5	_	_	
PWIN(off)	pulse width		(Note 9)		_	_	μs
VNC	VNC variation	Between VNC-N (including surge)		-5.0	_	5.0	V

Fig. 7 THE DIPIPM INTERNAL CIRCUIT

Note 8: The allowable rms current value depends on the actual application conditions.


9: IPM might not make response if the input signal pulse width is less than the recommended minimum value.

TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 8 TIMING CHART OF THE PROTECTIVE FUNCTIONS

[A] Short-Circuit Protection (N-side only with the external shunt resistor and RC filter)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit is detected (SC trigger).
- a3. All N-side IGBTs' gates are hard interrupted.
- a4. All N-side IGBTs turn OFF.
- a5. Fo is output (tFO(min) = 20μ s).
- a6. Input "L".
- a7. Input "H". But IGBT is still OFF state during outputting Fo.
- a8. IGBT turns ON when L→H signal is input after Fo is reset.

[B] Under-Voltage Protection (N-side, UVD)

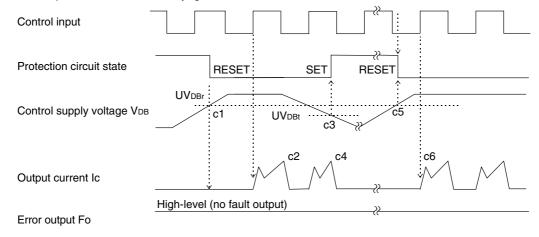
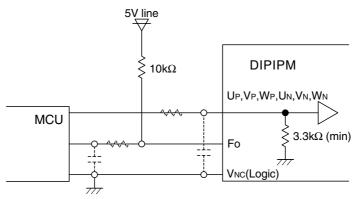
- b1. Control supply voltage VD rises: After VD level rises over under voltage reset level (UVDr), the circuits start to operate when next input is applied.

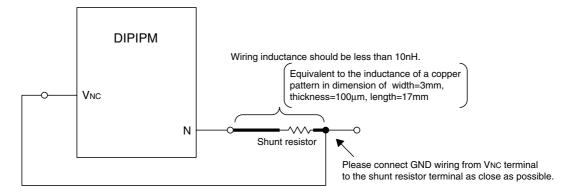
- b2. Normal operation: IGBT ON and carrying current.
 b3. VD level dips to under voltage trip level. (UVDt).
 b4. All N-side IGBTs turn OFF in spite of control input condition.
 b5. Fo is output. (tFO ≥ 20µs and Fo outputs continuously during UV period).
- b6. VD level rises over UVDr
- b7. Normal operation: IGBT ON and carrying current.

TRANSFER-MOLD TYPE INSULATED TYPE

[C] Under-Voltage Protection (P-side, UVDB)

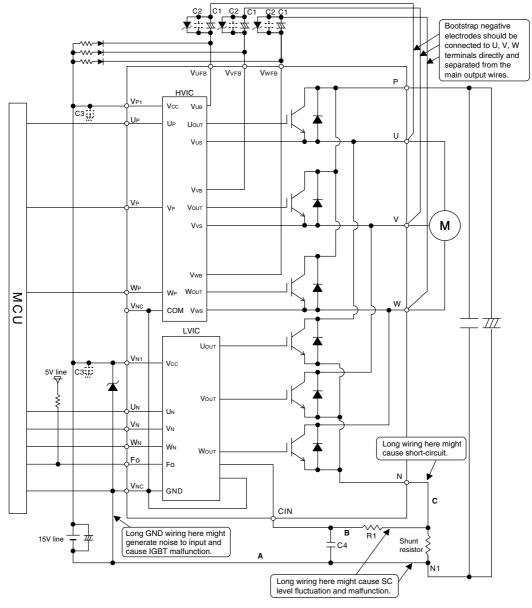
- c1. Control supply voltage VDB rises: After VDB level rises over under voltage reset level (UVDBr), the circuits start to operate when next input is applied.
- c2. Normal operation: IGBT ON and carrying current.
- c3. VDB level dips to under voltage trip level. (UVDBt).
- c4. P-side IGBT turns OFF in spite of control input signal level, but there is no Fo signal output.
- c5. VDB level rises over UVDBr.
- c6. Normal operation: IGBT ON and carrying current.


Fig. 9 AN INSTANCE OF INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

Input circuit integrates a $3.3k\Omega$ (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.


Fig. 10 WIRING CONNECTION OF SHUNT RESISTOR

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 11 AN EXAMPLE OF TYPICAL DIPIPM APPLICATION CIRCUIT

- Note 1 : Input drive is High-active type. There is a 3.3kΩ (Min.) pull-down resistor in the input circuit of IC. To prevent malfunction, the wiring of each input should be as short as possible. When using RC coupling circuit, make sure the input signal level meet the turn-on and turn-off threshold voltage.
 - 2 : Thanks to HVIC inside the module, direct coupling to MCU without any opto-coupler or transformer isolation is possible.
 - 3 : Fo output is open drain type. It should be pulled up to the MCU or control power supply (e.g. 5V, 15V) by a resistor that makes IFo up to 1mA.
 - 4 : To prevent erroneous protection, the wiring of A, B, C should be as short as possible.
 - 5 : The time constant R1C4 of the protection circuit should be selected in the range of 1.5-2μs. SC interrupting time might vary with the wiring pattern. Tight tolerance, temp-compensated type is recommended for R1, C4
 - 6 : All capacitors should be mounted as close to the terminals of DIPIPM as possible. (C1: good temperature, frequency characteristic electrolytic type, and C2, C3 (0.22~2μF): good temperature, frequency and DC bias characteristic ceramic type are recommended.)
 - 7 : To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 terminals should be as short as possible. Generally a 0.1-0.22μF snubber between the P-N1 terminals is recommended.
 - 8 : Two VNc terminals (9 & 16 pin) are connected inside DIPIPM, please connect either one to the 15V power supply GND and leave the other open.
 - 9: It is recommended to insert a Zener diode (24V/1W) between each pair of control supply terminals to prevent surge destruction.
 - 10: If control GND is connected with power GND by common broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND and power GND at only a point N1.
 - 11 : High voltage (VRRM =600V or more) and fast recovery type (trr=100ns or less) diodes should be used in the bootstrap circuit.

